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Considered one of the most

severe pollutant sources in the

UK

» 6% of surface water bodies
affected in England/Wales!"]

= 2nd most important freshwater
pollutant source in Scotland
(behind sewage)!2]

= Qver 700 km of waterways
affected nationally!3]

= 'Hotspot’ distribution of

abandoned mines

Mine Water Pollution | Scale of Problem
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Mine Water Pollution | Sources
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! DRIFT /= Mine workings pumped to keep
SRIFT mines dry |
\ P = Minerals (e.g. pyrite) exposed on
0315;5;\ — wall surfaces

Opp~-- = 0, ingress — mineral oxidation



Mine Water Pollution | Sources

Abandoned Workings

* Pumping stops

= Groundwater resurgence floods
former workings

Kies = Transport of metal-rich, high
50p~-- sulphate waters



Mine Water Pollution | Geochemistry

pH (6-9)
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CD = County Durham NY = North Yorkshire
CMB = Cumbria PD = Peak District
CRN = Cornwall PEN = Pennines

DVN = Devon YD = Yorkshire Dales

= ‘Acid’ Mine Drainage?

= Environment Agency data
for mine impacted
streams (surface)

= Low pH leachates within
mines, but generally not
at surface

= Buffering of pH by
carbonate-rich bedrock

= UK streams usually within
environmental quality
standards



Mine Water Pollution | Geochemistry

Fe (1)

Cu (0.028)

Cd (0.005)
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Zn (0.0078)

Pb (0.02)

Ni (0.2)
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Mine Water Pollution |Environmental Impact

= Metal Release = Mineral Precipitation
= Fish mortalities, particularly = Benthic smothering
salmonids!4] = Loss of spawning gravels!]
= Reduced diversity of = |mportant habitat loss
invertebrate species = Aesthetic issues

= Barrier to legislative targets

Damage to ecological community structure!>6l




Mine Water Pollution | Remediation

Active — e.qg. alkali dosing

Passive — e.g. aerobic wetland
= Remove metals through oxidation
and hydrolysis —— metal hydroxides

= High initial cost but remediate
pollution at lower-long term cost!®!

=  \Well suited to Fe removal

= High area required —dow area-
adjusted removal rates!®10]

= Require periodic dredging/
dewatering of precipitate
——extra cost




Mine Water Pollution | Remediation

= QOther remediation options;
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=  Anoxic limestone drains (ALDs) Ry ool
= Pelletised inorganic waste medial'"] Plastic Liner
= Vertical flow reactors!2!

o
e el

Limestone
(>90% CaCO,)

=  Current drawbacks: —

= High capital/resource cost of active dosing

= High area requirement of wetlands
=  Also requires low topography (not always available)
=  Well suited for Fe removal, less so for other metals

= Mineral precipitation —loss of capacity in sorption systems

= Limited potential for resource recovery



Project Aim | Overview

Remains a need for a low-footprint, affordable,
treatment system capable of selective, metal removal
and recovery.

Develop a laboratory-scale system using simulated and
real mine waters.

Explore potential for process valorisation to offset
remediation costs




lon Exchange Resins | Introduction

= Small crosslinked polymer beads (often Polystyrene-DVB)

= Commercially available augmented with a range of functional
groups

= Macroporous structure ensures high surface area and porosity

(Images from Hubicki et al. (2012))



lon Exchange Resins | Characteristics

= High physical and chemical stability

= High exchange capacity
= Many functional sites on bead and pore surfaces
= High metal uptake per resin mass

= Chelate formation ability
= Enables strong bonding with specific metal species/complexes
= Exhibit preferential selectivity towards certain ionic species
= Effective when target ion at low concentrations

O O

\ \
ONa O
f f N

N + |\/|2+ > S930 N——> M + 2Na+

S930
%/ g
ONa O

/
o} o)



lon Exchange Resins \Applications

= Extensive application in industrial processes

= e.g. hydrometallurgy, nuclear industry

= Base metal recovery
» Precious metal recovery
= Uranium enrichment

N-OH
R—
NH,

NH,

R—SANH

_NH _NH,

T I

S910 - Amidoxime

S914 - Thiourea

S920 - Isothiouronium

NN

OH R OH

R-NH OH
\—pP=0

OH

S930 - Iminodiacetic

S950 - Aminophosphonic

M4195 — Bis-picolylamine

R = resin
matrix

= |X system never successfully used for the remediation of

legacy mine waters



Surface Mine
Water

Elution of concentrated ‘waste’ stream
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Batch contacts — 2000ppm

M4195 (Bis-picolylamine)
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Effective Cu removal over pH range

Uptake of other metals suppressed
with increased [H*]

Removal relatively unaffected by
high [SO,]
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Preliminary Results | pH Screening
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Preliminary Results | pH Screening

S950 (Aminophosphonic)
R-NH OH
OH

Highly selective for Fe over other
metals regardless of pH

Suppression of other species at
higher [Ht] —weak acid
functionalised

Reduced metal uptake with higher
sulphate concentration, with
exception of Fe
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Preliminary Results | pH Screening

= S930 (Iminodiacetic acid)

OH R OH

= Sharp suppression at higher pH

= Most selective for Fe and Cu, other
metals extracted equally at ~pH 1-
1.5

= |ncreased extraction with higher
[SO,% ] —— stronger chelation

with higher ionic strength
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Preliminary Results | System Design
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Further Work | References SNUCER

= Continue static screening

= More resin functionalities
= Cu, Ni, Zn

» |sotherm loading

experiments
= Determine operating
capacities

= Dynamic (column)

experiments
= Use real mine water
samples

= Metal recovery

= System design and scale-
up
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