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 Considered one of the most 
severe pollutant sources in the 
UK
 6% of surface water bodies 

affected in England/Wales[1]

 2nd most important freshwater 
pollutant source in Scotland 
(behind sewage)[2]

 Over 700 km of waterways 
affected nationally[3]

 ‘Hotspot’ distribution of 
abandoned mines

Mine Water Pollution Scale of Problem

(Figure from Mayes et al. (2009))



Mine Water Pollution Sources
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Active Operation

 Mine workings pumped to keep 
mines dry

 Minerals (e.g. pyrite) exposed on 
wall surfaces

 O2 ingress – mineral oxidation
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Mine Water Pollution Sources
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Abandoned Workings

 Pumping stops
 Groundwater resurgence floods 

former workings
 Transport of metal-rich, high 

sulphate waters
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Mine Water Pollution Geochemistry

CD = County Durham
CMB = Cumbria
CRN = Cornwall
DVN = Devon

NY = North Yorkshire
PD = Peak District
PEN = Pennines
YD = Yorkshire Dales

 ‘Acid’ Mine Drainage?

 Environment Agency data 
for mine impacted 
streams (surface)

 Low pH leachates within 
mines, but generally not 
at surface

 Buffering of pH by 
carbonate-rich bedrock

 UK streams usually within 
environmental quality 
standards



Mine Water Pollution Geochemistry



Mine Water Pollution Environmental Impact

 Metal Release
 Fish mortalities, particularly 

salmonids[4]

 Reduced diversity of 
invertebrate species

 Barrier to legislative targets

 Mineral Precipitation
 Benthic smothering
 Loss of spawning gravels[4]

 Important habitat loss
 Aesthetic issues

Damage to ecological community structure[5,6]



Mine Water Pollution Remediation

 Active – e.g. alkali dosing

 Passive – e.g. aerobic wetland
 Remove metals through oxidation 

and hydrolysis metal hydroxides

 High initial cost but remediate 
pollution at lower-long term cost[8]

 Well suited to Fe removal

 High area required       low area-
adjusted removal rates[9,10]

 Require periodic dredging/ 
dewatering of precipitate

extra cost



Mine Water Pollution Remediation

 Other remediation options;

 Anoxic limestone drains (ALDs)
 Pelletised inorganic waste media[11]

 Vertical flow reactors[12]

 Current drawbacks:

 High capital/resource cost of active dosing

 High area requirement of wetlands
 Also requires low topography (not always available)
 Well suited for Fe removal, less so for other metals

 Mineral precipitation       loss of capacity in sorption systems

 Limited potential for resource recovery

Limestone 
(>90% CaCO3)

Clay Soil

Plastic Liner



Project Aim Overview

Remains a need for a low-footprint, affordable, 
treatment system capable of selective, metal removal 

and recovery.

Develop a laboratory-scale system using simulated and 
real mine waters.

Explore potential for process valorisation to offset 
remediation costs



Ion Exchange Resins Introduction

 Small crosslinked polymer beads (often Polystyrene-DVB)

 Commercially available augmented with a range of functional 
groups

 Macroporous structure ensures high surface area and porosity

(Images from Hubicki et al. (2012))



Ion Exchange Resins Characteristics

 High physical and chemical stability

 High exchange capacity
 Many functional sites on bead and pore surfaces
 High metal uptake per resin mass

 Chelate formation ability
 Enables strong bonding with specific metal species/complexes
 Exhibit preferential selectivity towards certain ionic species
 Effective when target ion at low concentrations

S930
N

ONa

O

ONa

O

S930 N

O

O

O

O

M+ M2+ + 2Na+



Ion Exchange Resins Applications

 Extensive application in industrial processes
 e.g. hydrometallurgy, nuclear industry

 Base metal recovery
 Precious metal recovery
 Uranium enrichment

 IX system never successfully used for the remediation of 
legacy mine waters

R = resin 
matrix



Surface Mine 
Water



Preliminary Results pH Screening

 Batch contacts – 2000ppm

 M4195 (Bis-picolylamine)

 Effective Cu removal over pH range

 Uptake of other metals suppressed 
with increased [H+]

 Removal relatively unaffected by 
high [SO4]

Cu 
Fe 
Ni  
Mn 
Zn 



Preliminary Results pH Screening

 S950 (Aminophosphonic)

 Highly selective for Fe over other 
metals regardless of pH

 Suppression of other species at 
higher [H+]       weak acid 
functionalised

 Reduced metal uptake with higher 
sulphate concentration, with 
exception of Fe

Cu 
Fe 
Ni  
Mn 
Zn 



Preliminary Results pH Screening

 S930 (Iminodiacetic acid)

 Sharp suppression at higher pH

 Most selective for Fe and Cu, other 
metals extracted equally at ~pH 1-
1.5

 Increased extraction with higher 
[SO4

2-] stronger chelation 
with higher ionic strength

Cu 
Fe 
Ni  
Mn 
Zn 



Preliminary Results System Design

S
9

5
0

A
m

in
o

p
h

o
sp

h
o

n
ic

H
+

se
le

ct
iv

e
 r

e
si

n

Mine 
Water 

PLS

Barren

Fe Cu, Ni, Zn Mn H+

M
4

1
9

5
B

is
-p

ic
o

ly
la

m
in

e

S
9

3
0

Im
in

o
d

ia
ce

ti
c



Further Work References

 Continue static screening
 More resin functionalities
 Cu, Ni, Zn 

 Isotherm loading 
experiments
 Determine operating 

capacities

 Dynamic (column) 
experiments
 Use real mine water 

samples
 Metal recovery

 System design and scale-
up
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